https://www.elm-tech.com

■概要

ELM901FxA 是内藏了电荷泵 (1x、2x 双模式自动切换) 和定电流驱动电路的大电流 LED 驱动器 IC,最大输出电流为 1A。本品适用于驱动电源为单节锂离子电池 / 聚合物锂离子电池设备的高亮度白色 LED。并且仅需外接三个电容和三个设定电阻即可工作。3mm x 3mm/4mm x 4mm 的 QFN 封装更使其占用很小的面积。

LED 电流可通过两路外接电阻进行设定,两路设定电流的 ON/OFF 分别由两路使能引脚控制,控制使能引脚使 LED 在三种电流模式中切换。为保护 LED,本品还可限制 LED 的发光时间,通过一个外接电阻和内置计时器,LED 连续发光一定时间之后会被强制熄灭(发光时间可从 0.2 秒,0.5 秒和 1 秒里选择)。本品内藏软启动功能,能够限制启动时和 1x、2x 模式切换时发生的涌入电流。

■特点

· 工作电压低 : 2.6V-4.4V

消耗电流低 : 300μA(1X), 9mA(2X)

・ 待机电流低 : Max.1μA・ 输出电流高 : Max.1A

・ LED保护功能 : 大电流时可限制发光时间 ・ 内藏 LED 定电流电路:通过外接电阻进行设定

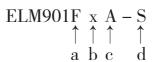
・ 软启动功能 : LED 电流启动时及 1x、2x 模式切换时・ 封装 : QFN16-4x4, QFN16-3x3 (开发中)

• 过热保护功能

■用途

- · 照相机的 LED 闪光灯
- · 高亮度 LED 电筒

■绝对最大额定值

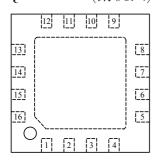

项目	记号	规格范围	单位
VIN引脚电压	Vin	GND-0.3 ~ 6	V
VO引脚电压	Vo	GND-0.3 ~ 6	V
EN1、EN2 引脚电压	Ven	$GND-0.3 \sim Vin+0.3$	V
VO 引脚电流、LED 电流	Io, Iled	1500 (注)	mA
工作温度	Тор	−40 ~ +85	$_{\mathcal{C}}$
保存温度	Tstg	− 40 ~ +125	$^{\circ}$

⁽注)根据长时间的电流密度限制而决定。假设在 10 秒以内的绝对最大条件下是 10%以下的占空比工作周期。连续工作的最大电流是 600mA。

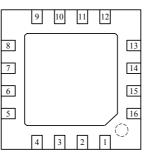
■产品型号构成

ELM901FxA-S

记号	项目	描述
a	封装	F: QFN
b		A: QFN16-4x4 B: QFN16-3x3 (开发中)
c	产品版本	A
d	包装卷带中 IC 引脚置向	S: 参考封装资料



*** Rev.1.0


https://www.elm-tech.com

■引脚配置图

QFN16-4x4(俯视图)

QFN16-4x4(底视图)

引脚编号 引脚名称 1 ISET2

11

12

13

14

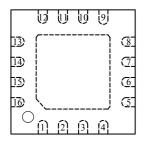
15

16

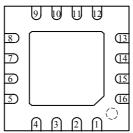
2 ISET1 3 EN2 4 EN1 5 **AGND** 6 FS 7 VIN PGND1 8 9 CM10 **PVIN**

CP

NC


VO

NC


PGND2

LED

QFN16-3x3(俯视图)

QFN16-3x3(底视图)

QTTTO-3X3()KTQ

■引脚说明

ISET2: LED 电流设定引脚 2

在 ISET2 和 GND 之间插入电阻(Rset2)可设定 LED 电流。当 EN2 引脚电压为 High 时,此引脚输出电压为 1.22V。LED 电流值为 ISET2 引脚输出电流的 3250 倍。

(例) Rset2=6.8kΩ时, Iled=1.22/6.8k x 3250=583mA

ISET1: LED 电流设定引脚 1

在 ISET1 和 GND 之间插入电阻(Rset1)可设定 LED 电流。当 EN1 引脚电压为 High 时,此引脚输出电压为 1.22V。LED 电流值为 ISET1 引脚输出电流的 3250 倍。

(例) Rset1=6.8kΩ时, Iled=1.22/6.8k x 3250=583mA

EN2: 使能控制引脚 2

此引脚用于控制 ISET2 设定的 LED 电流的 ON/OFF, 在 IC 内部被下拉到地电位。EN2 引脚为正逻辑输入,当输入电压为 High 时, ISET2 的设定电流会流过 LED。

EN1: 使能控制引脚 1

此引脚用于控制 ISET1 设定的 LED 电流的 ON/OFF, 在 IC 内部被下拉到地电位。EN1 引脚为正逻辑输入,当输入电压为 High 时, ISET1 的设定电流会流过 LED。

AGND: 内部模拟电路接地引脚

此引脚连接至 IC 内部模拟电路 GND 和 IC 底面的裸露衬垫,并且必须在外部和 PGND1,PGND2 相连。

*** Rev.1.0

https://www.elm-tech.com

FS: Fail-Safe 功能设定引脚

Fail-Safe 功能是指当 EN1=EN2=1 的状态持续一定时间之后强制关闭 LED 电流的功能。此功能是为 防止 LED 过热,且可以设定使其无效。EN1=EN2=1 状态开始到 LED 电流关闭计的计时器时间可以 由 FS 引脚和 GND 引脚之间的电阻进行设定。计时器时间可从以下三者中选择: (1) FS 和 GND 短路时为 1 秒, (2) FS 和 GND 之间电阻为 $20k\Omega$ 时为 0.2 秒, (3) FS 和 GND 之间电阻为 $51k\Omega$ 时为 0.5 秒。

此外,如不使用 Fail-Safe 功能,将 FS 和 VIN 短路或者将 FS 开路即可。

VIN: 内部电路电源引脚

此引脚和 IC 内部电路的电源相连。在外部必须将它连接至 PVIN 引脚,并在它和 GND 之间插入 2.2μF 以上的陶瓷电容。

PGND1: 电荷泵接地引脚

此引脚和 IC 内部电荷泵的 GND 相连,必须在外部连接至 AGND 和 PGND2 引脚。

CM: 升压电容连接引脚(低电位端)

CM 引脚是用来连接升压电容低电位端的引脚。CM 和 CP 引脚之间应插入升压电容(推荐电容量: $2.2\mu F$),并尽可能地缩短布线的长度。

PVIN: 电荷泵电源引脚

PVIN 是为电荷泵提供电源的引脚,必须在外部连接至 VIN 引脚。

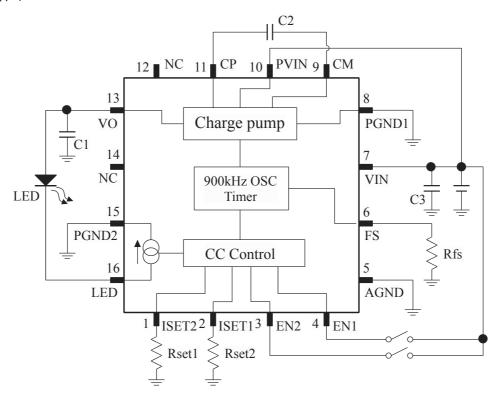
CP: 升压电容连接引脚(高电位端)

CP 引脚是用来连接升压电容高电位端的引脚。CP 和 CM 引脚之间应插入升压电容(推荐电容量: 2.2μF), 并尽可能地缩短布线的长度。

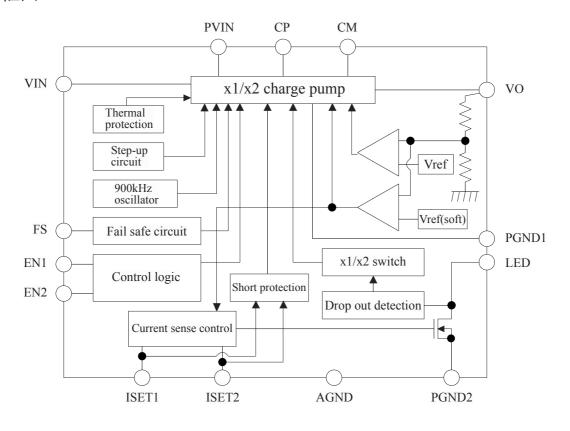
VO: 升压输出引脚

VO 引脚连接至 LED 的阳极。1x 模式的输出电压基本等同于 VIN 电压, 升压时的输出电压为 5.5V。

PGND2: LED 电流驱动电路接地引脚


此引脚和 IC 内部 LED 电流驱动电路的 GND 相连。必须在外部连接至 AGND 和 PGND1。

LED: 定电流漏型输入引脚


LED 引脚连接至 LED 的阴极。ISET1/2 设定的电流会流入 LED 引脚。

■标准电路图

■电路框图

https://www.elm-tech.com

■功能说明

本品是为驱动电源为单节锂离子电池 / 聚合物锂离子电池的高亮度白色 LED 而设计的 IC。当电池电压相比 LED 正向电压足够高时,本品直接连接电池至 LED 使之发光。当电池电压下降之后,内部电荷泵电路将电压升压至 5.5V 以驱动 LED。LED 电流由两路外部电阻进行设定。通过控制两路电阻各自的使能端,LED 可以有三种电流模式。本品最大可提供 1A 的 LED 电流,但长时间的大电流工作有可能烧毁 LED。为防止烧毁事故,使用内藏的计时器可强制关闭 LED 电流。计时器仅在最大电流工作条件下生效。计时器时间可以通过外部连接至 FS 引脚的电阻进行选择。(0.2 秒,0.5 秒,1 秒三者选一)并且,将 FS 引脚连接至 VIN,或者将 FS 引脚开路均可令计时器失效。

电源施加时的动作

EN1=EN2=0 或者两者均开路(待机)时,本品工作于待机状态。待机状态下,VIN和VO之间的高阻PMOS开关导通,同时CP和VO引脚之间的PMOS开关(开关4),CM和PGND1引脚之间的NMOS开关(开关1)导通。此状态下,电源输出的电流,通过高阻PMOS开关缓慢地向输出电容Co和跨接电容C1(升压电容)充电,充电需要大约5ms的时间。(如若电源施加后5ms以内开始运作,可能会发生大的涌入电路

待机状态

待机时输出电容 Co 和跨接电容同时处于满充电状态,两者经由高阻 PMOS 开关连接至电源 VIN。 待机时的满充电状态可以防止运作开始时发生的涌入电流,并且随时都可以立即使 LED 发光。

启动时

启动时,本品首先检查 VO 是否短路。当确认 VO 没有短路时, VIN 和 VO 引脚之间的低阻开关导通, 开始 1x 模式的运作。当检查出 VO 短路时, VO 保持待机状态,LED 引脚也维持关闭状态。这时, VO 和 LED 输出以外的内部电路开始正常工作,所以当短路状态解除时,本品可立刻开始 1x 模式的运作。从启动到 1x 模式输出为止大约需要 30ms (typ.)的时间。此时因为 VO 已经和 VIN 相等,所以不会发生大的涌入电流。但是如果 VO 和 GND 引脚之间有数十~数百欧姆的电阻造成短路,并且 VO>0.7V 时,电容充电会仍然会引起涌入电流。启动到 LED 电流流动为止需要 $130\mu s$ (typ.),之后 LED 电流上升到设定电流需要数十 μs 的时间。

1x 模式运作时

当 1x 模式运作时检测出 LED 引脚电压过度下降时,本品会自动切换到 2x 模式。当 LED 电流处于 【低】电流模式时,LED 引脚电压下降之后,本品会维持 1x 模式并等待 150ms。这期间里如果电压下降被解除,本品会复位计时器,并维持 1x 模式。如果 LED 电流处于【高】或者【低+高】模式时,一旦检测出 LED 引脚电压下降,2ms 后本品会自动切换到 2x 模式。2ms 期间如果电压下降被解除,同样的本品会复位计时器,并维持 1x 模式。LED 电流大于 240mA(typ.)时,模式切换的阈值压降电压和 LED 电流成比例,当 LED 电流较小时,阈值压降电压固定为 100mV。

软升压运作时

升压开始时, 电荷泵开始运作, 并逐渐提高 VO 电压(软升压)。软升压使 VO 电压随时间线性上升, 以防止涌入电流。升压过程中, LED 电流被降至设定电流的二分之一。同时, 为了防止升压开始后 10μs 内 LED 电流的剧烈变化, 升压中的 LED 电流被强制限定在 350mA(typ.)以下。升压结束后 LED 电流会恢复到设定的电流。

2x 模式运作时

正常切换到 2x 模式之后,本品会维持 2x 模式运作直至被强制复位到待机状态(EN1=EN2=GND)。 如果要使之工作于 1x 模式,必须先将其复位到待机状态之后,再重新启动。

™ Rev.1.0

https://www.elm-tech.com

■保护功能说明

过热保护

当内部结合部温度超过 150℃时,过热关断电路会关闭 VO 输出(只保留高阻 PMOS 开关导通),并 关闭 LED 电流。要解除过热保护,需将本品复位到待机状态,再重新启动。

Iset1/Iset2 引脚短路保护

EN1=0 → 1 启动时,如果 ISET1 引脚的电阻 Rset 低于 $3.9k\Omega$ (LED 设定电流高于 1A),ISET1 引脚设定的 LED 电流(【低】电流)将会失效。此时如果 ISET2 引脚处于正常状态,ISET2 设定的 LED 电流(【高】电流)会正常流经 LED。如果 EN1=1 运作中,ISET1 和 GND 发生短路,无论 EN 引脚为何电位,当检测出 LED 电流超过 1.5A 的界限之后,LED 电流将被关闭。另外,EN1=EN2=1 的状态下,如果【低】+【高】电流超过 1.5A,LED 电流同样会被关断。同样的,EN2=0 → 1 启动时,如果 ISET2 引脚的电阻 Rset 低于 $3.9k\Omega$ (LED 设定电流高于 1A),ISET2 设定的 LED 电流(【高】电流)将会失效。此时如果 ISET1 引脚处于正常状态,ISET1 设定的 LED 电流(【低】电流)会正常流经 LED。如果 EN2=1 运作中,ISET2 和 GND 发生短路,无论 EN 引脚为何电位,当检测出 LED 电流超过 1.5A 的界限之后,LED 电流将被关断。另外,EN1=EN2=1 的状态下,如果【低】+【高】电流超过 1.5A,LED 电流同样会被关断。

VO引脚短路保护

运作中当 VO 引脚电压低至 0.7V 时,本品将关闭 VO 和 LED 输出,并维持 VIN 和 VO 通过高阻 PMOS 开关相连的状态(待机状态)。当短路解除,VO 电压高于 0.7V 时,VO,LED 恢复输出,开始运作。当 2x 模式运作中检测到 VO 短路时,不需 EN1=EN2=0,本品自动切换到待机状态。

Fail-Safe 功能

Fail-Safe 功能是指,当【低+高】电流状态(EN1=EN2=1)维持一定时间以后,强制关闭 LED 输出的功能。当 EN1=EN2=1 的状态解除时,LED 电流的强制关闭也随之解除。LED 电流强制关闭发生的时刻由外接电阻 Rfs 进行设定(可从 0.2 秒, 0.5 秒和 1 秒里选择)。如果不使用此功能,请将FS 引脚连接至 VIN 引脚,或者将 FS 引脚开路。

https://www.elm-tech.com

■电特性

没有特别指出时,Vin=3.6V, Cin=C1=2.2μF, Co=4.7μF, Ta=25℃

项目	记号	条件	最小值	典型值	最大值	单位
输入电压范围	Vin		2.6		4.4	V
静态消费电流 1	Iqs1	1x 模式、Iled=0mA		300	550	μA
静态消费电流 2	Iqs2	2x 模式、Iled=0mA		9	16	mA
待机电流	Isd	EN1=EN2=0V		0. 1	1.0	μA
LED 电流						
LED 电流比 1(Iled/Iset1/2)	Iled1	Vin=3.8V, Iled=200mA, Vf=3.3V	typ. × 0.96	3250	typ. × 1.04	mA/mA
LED 电流比 2(Iled/Iset1/2)	Iled2	Vin=3.3 ~ 4.4V, Iled=200 ~ 800mA	typ. × 0.90	3250	typ. × 1.10	mA/mA
Iled 阈值压降电压 1	Vled1 (Min.)	模式切换阈值电压,Iled=300mA		125	225	mV
Iled 阈值压降电压 2	Vled2 (Min.)	模式切换阈值电压, Iled=150mA	80	100	120	mV
模式切换延迟时间 1	Td1	EN1=High, EN2=Low	100	150	200	ms
模式切换延迟时间 2	Td2	EN1=Low or High, EN2=High	1	2	3	ms
LED 电流开启时间	LED(on)	EN 引脚 ON 到 LED 电流开始流动为止	50	130	250	μs
电流输出能力	Iled (Max.)	Vin=3.3V, EN1=EN2=High, Iled=1A(设定), VF=4.6V	900			mA
LED 电流安定时间 1	TIled1	Iled= 0 mA $\rightarrow 200$ mA		40		μs
LED 电流安定时间 2	TIled2	Iled= $200 \text{mA} \rightarrow 700 \text{mA}$		60		μs
软升压时 LED 电流	Iled (soft)	Iled=700mA(设定)	250	350	450	mA
电荷泵						
软升压时间	Tsoft	Iled=700mA, Vo=3.7V \rightarrow 5.2V	75	150	300	μs
1x 模式输出电压	Vo(x1)	Iled=0mA		Vin		V
2x 模式输出电压	Vo(x2)	Iled=0mA	typ. × 0.95	5.5	typ. × 1.05	V
1x 模式输出阻抗	Ro(x1)	Vin=3.4V		0.25	0.37	Ω
2x 模式输出阻抗	Ro(x2)	(2Vin-Vo)/Io, Vin=3.2V, Vo=5.1V		1.70	2.55	Ω
振荡频率	Fosc		0.72	0.90	1.08	MHz
EN1, EN2 引脚						
输出开启电压	Vc(ON)	Vin=2.9 ~ 4.4V, 各引脚	0.95			V
输出关闭电压	Vc(OFF)	Vin=2.9 ~ 4.4V, 各引脚			0.45	V
EN引脚偏置电流	Ic(ON)	Ven=3.6V, 各引脚		20	50	μA
ISET1, ISET2 引脚						
标准电压	Vref	Iset=50μA, 各引脚	1.202	1.220	1.238	V
ISET 引脚设定电流	Iset	各引脚			310	μA

https://www.elm-tech.com

项目	记号	条件	最小值	典型值	最大值	单位	
短路保护电路							
ISET 引脚短路时 Iled 上限	Iled (short)	ISET1, 2 引脚,短路保护时 LED 电流关闭,Vin=3.9V, Vled=1.0V,2x 模式运作		1.5		A	
VO 引脚短路保护启动电压	Vo (short)	短路保护时 LED 电流关闭	0.45	0.60	0.95	V	
VO 引脚短路电流	Ishort	Vin=3.6V		30		mA	
过热保护电路							
过热保护功能启动温度	OHP	过热保护时 LED 电流关闭		150		${}^{\circ}\!$	
Fail-Safe 电路							
Fail-Safe 设定范围	Tfs (range)	 * FS-VIN 引脚短路,或者 FS	0.2		1.0	s	
Fail-Safe 时间 1	Tfs1	引脚开路时,Fail–Safe 功能	0.8	1.0	1.2	s	
Fail-Safe 时间 2	Tfs2	失效	0.16	0.20	0.24	s	
Fail-Safe 时间 3	Tfs3		0.4	0.5	0.6	s	
Fail-Safe 引脚电流	Ifs		10	15	20	μΑ	
FS 引脚阈值电压 1	Vfs1		0.12	0.15	0.18	V	
FS 引脚阈值电压 2	Vfs2		0.405	0.450	0.495	V	
FS 引脚阈值电压 3	Vfs3		1.08	1.22	1.36	V	

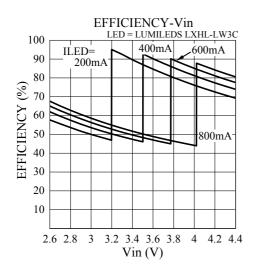
项目			条件
EN 引脚逻辑与 LED 电流			
EN引脚逻辑	EN1	EN2	
待机(输出 OFF)	0	0] * EN1, EN2 引脚在 IC 内部被下拉到地电位,所以
Low 电流	1	0	^ EN1, EN2 列牌在1C 內部級下拉到地电位, 別以 开路时本品处于待机状态
High 电流	0	1] 月始时华丽处于行机公
Low+High 电流	1	1	

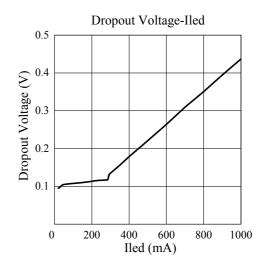
■封装印字说明

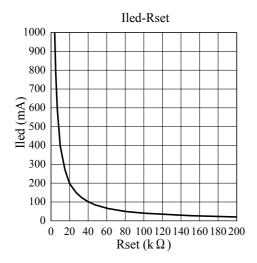
・QFN16-4x4 封装: ELM901FAA

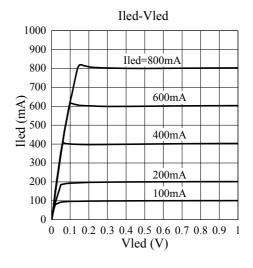
ELM
901FAA
a b c

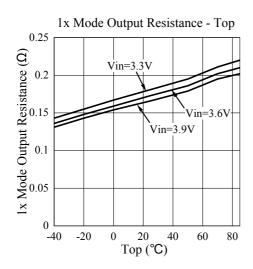
印字	表示内容
ELM901FAA	产品型号
abc (000 ~ 999)	生产组装批号


・QFN16-3x3 封装 : ELM901FBA


ELM 901FBA a b c


印字	表示内容
ELM901FBA	产品型号
abc (000 ~ 999)	生产组装批号




■标准特性曲线图

