单 N 沟道 MOSFET

ELM52304AA-S

muhttp://www.elm-tech.com

■概要

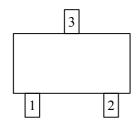
ELM52304AA-S是N沟道低输入电容,低工作电压,低导通电阻的大电流 MOSFET。

■特点

- Vds=30V
- Id=3.6A
- $Rds(on) < 82m\Omega \text{ (Vgs=10V)}$
- Rds(on) $< 108 \text{m} \Omega \text{ (Vgs=4.5V)}$

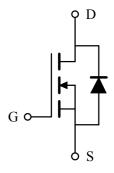
■绝对最大额定值

如没有特别注明时, Ta=25℃


项目		记号	规格范围	单位	
漏极 – 源极电压		Vds	30	V	
栅极 – 源极电压		Vgs	± 20	V	
漏极电流(Tj=150℃)	Ta=25 ℃	Id	3.6	A	
	Ta=70°C		2.0		
漏极电流(脉冲)		Idm	10	A	
容许功耗	Tc=25 ℃	Pd	1.25	W	
	Tc=70°C	Pa	0.80		
结合部温度及保存温度范围		Tj, Tstg	- 55 ~ 150	$^{\circ}\! \mathbb{C}$	

■热特性

项目	记号	典型值	最大值	单位
最大结合部 – 环境热阻	Rθja		120	°C/W


■引脚配置图

SOT-23(俯视图)

引脚编号	引脚名称
1	GATE
2	SOURCE
3	DRAIN

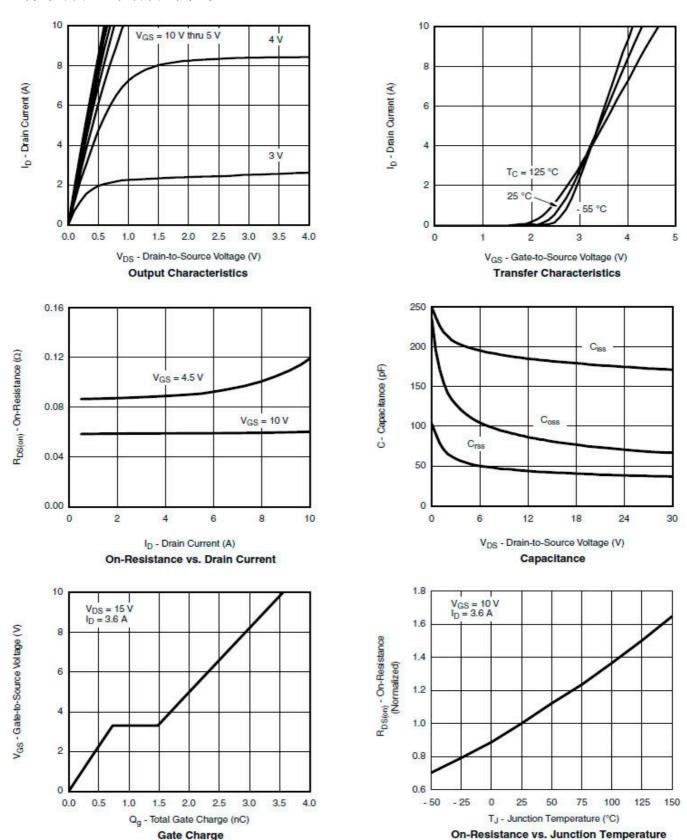
■电路图

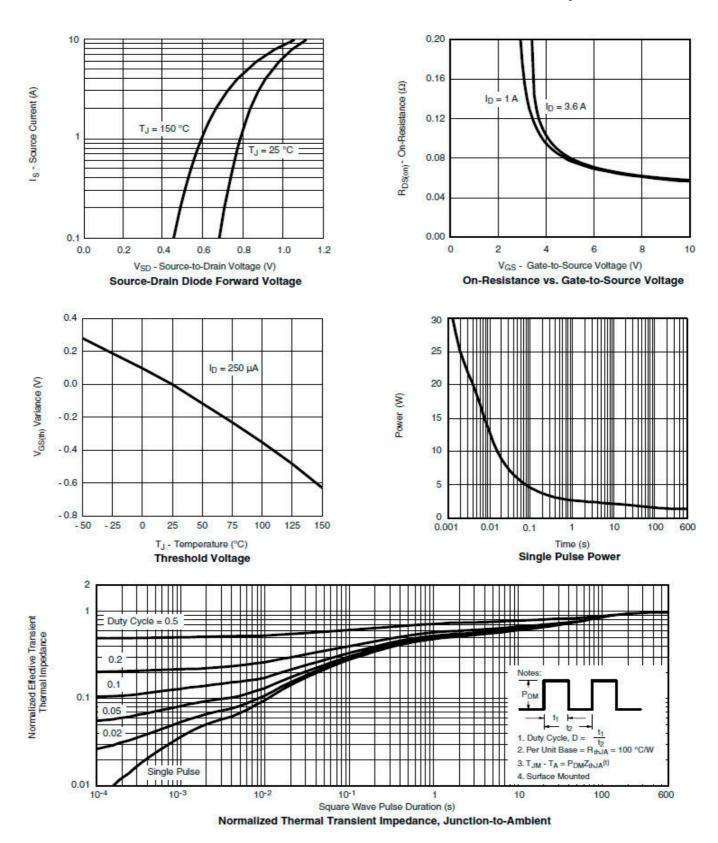
单 N 沟道 MOSFET ELM52304AA-S

uuu http://www.elm-tech.com

■电特性

如没有特别注明时, Ta=25℃


项目	记号	条件	最小值	典型值	最大值	单位	
静态特性							
漏极 – 源极击穿电压	BVdss	Id=250 μA, Vgs=0V	30			V	
栅极接地时漏极电流	Idss	Vds=30V,Vgs=0V			1	μΑ	
	lass	Vds=30V,Vgs=0V, Ta=85 ℃			30		
栅极漏电电流	Igss	$Vds=0V, Vgs=\pm 20V$			± 100	nA	
栅极阈值电压	Vgs(th)	$Vds=Vgs$, $Id=250 \mu A$	1.0		2.5	V	
导通时漏极电流	Id(on)	Vgs=4.5V, Vds=5V	30			A	
漏极 – 源极导通电阻	Rds(on)	Vgs=10V, Id=2.6A		72	82	$m\Omega$	
	Nus(on)	Vgs=4.5V, Id=2.0A		95	108		
正向跨导	Gfs	Vds=10V, Id=6.1A		20		S	
二极管正向压降	Vsd	Is=1.7A, Vgs=0V		0.8	1.2	V	
寄生二极管最大连续电流	Is				1.6	A	
动态特性							
输入电容	Ciss			280		pF	
输出电容	Coss	Vgs=0V, Vds=15V, f=1MHz		40		рF	
反馈电容	Crss			20		pF	
开关特性							
总栅极电荷	Qg			2.3	3.0	nC	
栅极 – 源极电荷	Qgs	Vgs=4.5V, Vds=15V, Id=3.6A		1.0		nC	
栅极 – 漏极电荷	Qgd			0.6		nC	
导通延迟时间	td(on)			10	15	ns	
导通上升时间	tr	$Vgs=10V, Vds=15V, RL=15\Omega$		12	20	ns	
关闭延迟时间	td(off)	Id=1A, Rgen=6 Ω		15	25	ns	
关闭下降时间	tf			10	15	ns	


单 N 沟道 MOSFET ELM52304AA-S

///www.elm-tech.com

■标准特性和热特性曲线

